Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
宛若細菌偵探的演化生物學家──郭志鴻 |研之有物 - 中央研究院植物微生物研究

宛若細菌偵探的演化生物學家 郭志鴻

細菌的身世之謎

為什麼有些細菌會致病、有些不會?為什麼有些細菌需要依賴宿主存活、有些不用?要回答這些問題,需要比較不同的細菌,找出其中基因的異同處,就如同推理劇般一步步推敲細菌們的演化史。
「世界上有很多細菌,我們的工作是研究這些細菌如何變得不一樣!」中研院植物暨微生物所的郭志鴻副研究員說。 攝影│張語辰
「世界上有很多細菌,我們的工作是研究這些細菌如何變得不一樣!」中研院植物暨微生物所的郭志鴻副研究員說。
攝影│張語辰

問為什麼研究細菌?

答細菌的多樣性非常高,因為演化的歷史比動植物長很多,可以生存的環境也很多樣。

目前證據顯示細菌在三十億年前就在地球上出現,而多細胞生物的演化史則不到十億年。另外動植物能生存的範圍蠻窄的,但無論在高溫、低溫、高壓、低壓、低氧……什麼奇怪的環境都能找到細菌,所以能探討的題目就很多。

我從博士後訓練時期開始投入「細菌基因體演化」的研究。一開始先問巨觀的問題,例如說有什麼演化趨勢是在大部份的細菌都會發現。 2010 年起在中研院建立自己的實驗室,興趣也轉向針對微觀的細節深入研究。近年來主要的研究材料是柔膜菌綱中的「植物菌質體」和「螺旋菌質體」。

問細菌演化有何奇妙現象?

答在演化的歷程中,細菌擁有的基因「種類」和「數量」會有劇烈的變化。

橫軸可以解釋為細菌演化的歷程,也可以解釋為細菌有多需要宿主。 資料來源│Winding paths to simplicity: genome evolution in facultative insect symbionts (CC-BY 授權) 圖說重製│林婷嫻、張語辰
橫軸可以解釋為細菌演化的歷程,也可以解釋為細菌有多需要宿主。
資料來源│Winding paths to simplicity: genome evolution in facultative insect symbionts (CC-BY 授權) 圖說重製│林婷嫻、張語辰

若以基因體大小和宿主依賴度來分,細菌可分為「環境微生物」、「兼性共生菌」、「絕對共生菌」。

在細菌演化的歷程中,一開始的環境微生物基因體較大,帶有各式各樣在自然環境中生存所需的基因。但經過「第一次過渡事件」後,就從完全不依靠宿主,變成兼性共生菌,在有些條件下和宿主一起存活。

當需要依靠特定的動植物時,細菌的族群就不能比宿主大,一但細菌的族群變小,「天擇」的力量就會減弱,由隨機事件掌控的「遺傳漂移 (genetic drift) 」就變得比較重要。許多突變,即使對細菌本身不利,都有機會因為隨機事件遺傳給下一代,甚至到族群中所有個體。

族群大,天擇重要;族群小,遺傳漂移重要。

細菌基因體的突變,最常見的形式是「基因丟失」,這些被丟失的基因不是絕對必要、比較像「備用工具」,若失去這些備用工具平時不會產生大影響,這個結果就容易遺傳給下一代。

到了「第二次過渡事件」,細菌從兼性共生變成絕對共生,不能再離開宿主,例如柔膜菌綱的「植物菌質體」。這時候因為很多營養可以改成從宿主身上取得,許多自行合成氨基酸、脂質等養份的基因就像不再被需要的備用工具,也自然從細菌的基因體中消失。也因此這些細菌可能走入演化的死巷,難以再轉換到其他的生態棲位。

細菌三十億年前出現在地球上,這些基因演化發生地多快多慢,目前並不清楚,因為細菌不像恐龍有化石紀錄,很難定年。

問實驗室在研究哪些細菌?

答我們實驗室主要研究柔膜菌綱中的細菌。這類細菌最廣為人知的是「黴漿菌」,引起很多人類跟動物的重要疾病,世界上有很多實驗室在研究。而我們則主要研究「植物菌質體」和「螺旋菌質體」,並比較這三群細菌間的異同。

柔膜菌綱包含三種:「黴漿菌」會讓溫體動物生病;「植物菌質體」會讓植物生病;而大部分的「螺旋菌質體」是節肢動物的共生菌,有的會致病、有的不會致病。 資料來源│郭志鴻提供 圖說重製│林婷嫻、張語辰
柔膜菌綱包含三種:「黴漿菌」會讓溫體動物生病;「植物菌質體」會讓植物生病;而大部分的「螺旋菌質體」是節肢動物的共生菌,有的會致病、有的不會致病。
資料來源│郭志鴻提供 圖說重製│林婷嫻、張語辰

植物菌質體是一群由昆蟲傳播的植物病菌,幾十年來都無法被人工培養。我們透過基因體定序,由受感染的植物中分別解出「植物」和「植物菌質體」的 DNA 序列 ,並將「健康的植物」和「被感染的植物」做比較分析,來了解植物菌質體如何讓植物生病,這對農業非常重要。

左為健康的繡球花,右為受植物菌質體感染、該開花的部位長出葉子。 圖片來源│Genomic and evolutionary aspects of phytoplasmas (CC-BY 授權)
左為健康的繡球花,右為受植物菌質體感染、該開花的部位長出葉子。
圖片來源│Genomic and evolutionary aspects of phytoplasmas (CC-BY 授權)

植物菌質體進入植物體內後,會分泌小小蛋白質、調控植物細胞裡基因的表現,讓該開花的部位長出很多葉子。

植物菌質體可以將植物「開花」的機制切換成「長更多葉子」的機制,如此一來植物無法傳宗接代,在演化上等於死掉一樣。而且因為植物無法開花結果,對農業生產造成很大的問題。

除此之外,植物菌質體還會降低植物用來防禦昆蟲的化學物質、吸引昆蟲來吃植物,這麼一來植物菌質體又能藉由昆蟲散播到新的宿主。我們正在研究植物菌質體是利用什麼機制來調控這過程。

相對於「植物菌質體」都會讓植物宿主生病,同屬於柔膜菌綱的「螺旋菌質體」,大部分是節肢動物的共生菌,有的會讓宿主生病、有的不會。

這是螺旋菌質體好玩的地方,我們能從「比較基因體學」的角度,去看螺旋菌質體這個屬內的「病菌」和「非病菌」物種的基因哪裡不同,是多了或少了某個基因造成這種差別;也能探討這些演化是如何發生,是藉由「垂直基因遺傳」、或是「水平基因轉移」。

螺旋菌質體在光學顯微鏡下,看起來像被稍微拉長的捲捲電話線。 資料來源│Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris (CC-BY授權) 圖說重製│林婷嫻、張語辰
螺旋菌質體在光學顯微鏡下,看起來像被稍微拉長的捲捲電話線。
資料來源│Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris
(CC-BY授權) 圖說重製│林婷嫻、張語辰

問為什麼有些細菌會致病、有些不會?

答我們這幾年研究蚊子身上的螺旋菌質體,結果發現有致病性的 S. taiwanense 能夠消化的「碳水化合物」較少,但因為帶有一組非病菌所沒有的 glpO 基因,能在蚊子體內改吃甘油、並生成「過氧化氫」等「活性氧物種」,造成蚊科宿主的細胞溶掉、釋放出細胞裡的蛋白質和脂質, S. taiwanense 就能吃這些蛋白質和脂質作為養分來源,相當具有侵略性。

和三斑家蚊共生的螺旋菌質體 S. diminutum ,可以和蚊科宿主和平共處。但另一種和三斑家蚊共生的螺旋菌質體 S. taiwanense ,會破壞蚊科宿主的組織、增加死亡率。 資料來源│Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense (CC-BY-NC 授權) 製圖/修改│羅文穗、張天昫、林婷嫻、張語辰、郭志鴻
和三斑家蚊共生的螺旋菌質體 S. diminutum ,可以和蚊科宿主和平共處。但另一種和三斑家蚊共生的螺旋菌質體 S. taiwanense ,會破壞蚊科宿主的組織、增加死亡率。
資料來源│Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense (CC-BY-NC 授權) 製圖/修改│羅文穗、張天昫、林婷嫻、張語辰、郭志鴻

S. taiwanense 這樣苦苦相逼宿主有什麼好處?它採取的策略是,只要我傷害宿主可以多複製幾個細胞,提高傳播到下個宿主的機會,就是有利的生存策略。反過來說,若宿主是獨居性的動物,一座山頭只有一隻,共生菌就會傾向與宿主和平共存,因為若傷害宿主、細菌也無法存活。

共生菌要多具有侵略性,受限於宿主的「族群密度」和「傳播機會」。

會做這個題目是因為,我們透過文獻知道 S. taiwanenseS. diminutum 這兩種螺旋菌質體都是蚊子的共生菌,但 S. taiwanense 會使蚊子生病, S. diminutum 卻不會。

我們選了一些與 S. taiwanenseS. diminutum 親緣關係相近的菌種,比較這些菌種的演化史,看看是哪個基因造成這種差別。除了多瞭解台灣本土的昆蟲共生菌之外,也許有機會發展於登革熱的生物防治。

問細菌會水平轉移基因?

答以前課本教:基因是爸媽遺傳給我們,因此一般會認為生物演化大多是「垂直基因遺傳」,再慢慢累積突變,造成物種間的差異。而「水平基因轉移」的意思是,一個物種可以從其他物種得到自己原本所沒有的新基因,這是細菌演化上很重要的機制。

細菌是體細胞兼生殖細胞,所以很容易「水平轉移」基因。

如下圖,我們分析細菌的親緣關係,發現剛剛提到的 glpO 基因是從別的菌種「水平轉移」拿來的。這些新拿來的基因不只存在於細菌基因體中裡,還會被納入基因調控的分子機制中、產生新的反應。

(A) 圖:若基因演化史為「垂直遺傳」,則親緣關係會像此圖。演化關係相近的物種,例如上方五個以紅色標示的螺旋菌質物種,在親緣樹上也會較接近。 (B) 圖:來自S. taiwanense 的基因 (STAIW_v1c07530) 跟其他的螺旋菌質體物種的基因(紅色)關係較遠,反而跟黴漿菌的基因(藍色)關係較近,推測可能是因為此基因是 S. taiwanense 自黴漿菌水平轉移而得到。 資料來源│Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species (CC-BY-NC 授權)
(A) 圖:若基因演化史為「垂直遺傳」,則親緣關係會像此圖。演化關係相近的物種,例如上方五個以紅色標示的螺旋菌質物種,在親緣樹上也會較接近。
(B) 圖:來自 S. taiwanense 的基因 (STAIW_v1c07530) 跟其他的螺旋菌質體物種的基因(紅色)關係較遠,反而跟黴漿菌的基因(藍色)關係較近,推測可能是因為此基因是 S. taiwanense 自黴漿菌水平轉移而得到。
資料來源│Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species (CC-BY-NC 授權)

問「超級細菌」是怎麼回事?

答目前人類了解的細菌不到整體百分之一,而新科技的發展讓我們開始慢慢了解許多過去沒研究過的細菌。有在實驗室被成功培養出來的細菌中、會讓人類生病的是少數中的少數。

大約一百年前,抗生素剛被發現就像「魔法子彈」,可以治療幾乎所有細菌感染的疾病,但後來抗生素開始失去效果,因為細菌經由基因突變、或藉由水平基因轉移,可以抵抗抗生素。「超級細菌」是因為具備多重抗藥性,已經湊齊能抵抗不同抗生素的基因,除非醫學又開發出新型的抗生素,否則醫生就無藥可用。這過程就像人類和病菌間持續的軍備競賽。

帶有這個抗藥性的基因對細菌有利,這是人類造成的天擇。

天擇造成的生存壓力很大,本來只有某種細菌有某個特定的抗藥性基因,但不同的細菌之間容易互相藉由「水平轉移」傳播抵抗不同抗生素的基因。在疾病管理上,盡量不要讓不同病人帶有的病菌有機會互相接觸。

若要避免產生超級細菌,唯一有效的方法是不要用抗生素。因為在有抗生素的環境中,細菌帶有抗藥性的基因是有利的;但若在沒有抗生素的環境下,細菌帶有抗藥性的基因就變得多餘。

實際上,不要用抗生素真的很難,若非得要用,就要用得徹底,醫生開給你七天的藥就要吃完,讓足夠的藥劑量將病菌在發展出抗藥性前徹底殺死。

問如何找到實驗靈感?

答沒有公式可以依循,失敗的題目遠比成功的多。

我們從文獻上知道有哪些細菌存在、知道前人做了什麼、有哪些可以做還沒做、有不有趣。做完這些評估,我們再來想想實驗室能不能做到,覺得有希望就試試看。

失敗的話怎麼辦?就偷偷傷心一下下再努力(笑)。例如說賣雞排,倒掉的店也比賺大錢的多,這點可能各行各樣都差不多。

走學術研究這條路,從研究所開始就是不斷面對失敗的訓練。當上老師後不但要分擔學生的挫折,還要為了研究計畫的申請跟成果的發表奮鬥。雖然不斷面對失敗免不了難過,但回頭看過程中學到的經驗,怎麼把困難的問題理出頭緒,找到自己的看法,最後能有幾個有趣的故事可以說出來跟大家分享,這就是做研究迷人的地方。

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界