Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
突破光學極限,打造奈米雷射元件 呂宥蓉 │ 研之有物 - 中央研究院應用科學研究

突破光學極限,打造奈米雷射元件──呂宥蓉

電漿光子奈米雷射研究

如同摩爾定律的預測般,電晶體元件的尺寸在過去數十年間不斷縮小至奈米尺度,帶來了科技與工藝的精進創新。但發光與雷射元件,卻受限於繞射極限而難有突破。然而,中研院應用科學研究中心的呂宥蓉助研究員,在碩博士時期與團隊不斷突破光學和自我極限,成功開發出半導體奈米雷射。
中研院呂宥蓉博士與團隊所開發的電漿光子奈米雷射,利用金屬與介電質之間會產生表面電漿極化子的特性,成功開發出史上最小的半導體奈米雷射。圖│廖英凱
中研院呂宥蓉博士與團隊所開發的電漿光子奈米雷射,利用金屬與介電質之間會產生表面電漿極化子的特性,成功開發出史上最小的半導體奈米雷射。
圖│廖英凱

雷射的原理與光學繞射極限

1916 年,愛因斯坦首次探討描述了原子有「自發輻射」與「受激輻射」的可能性。他認為被激發的高能態原子,會有兩種回到低能量狀態的過程。一種是自行釋放出光子而回到低能態的自發輻射;另一種則是如果照射「特定波長」的光子,可以刺激原子提前釋放出,與原照射光波長相同光子的受激輻射。

1958 年, Charles H. Townes 在分子光譜學的研究中,構想出可利用「受激輻射」的原理來得到指定波長的光;他的同事 Arthur L. Schawlow 提出在激發出光的物質兩端,裝上兩面反射鏡,讓激發光不斷在物質內部來回來反射,由於「受激輻射」的發射速率超過吸收速率,透過此構想,便可實現光放大效應,讓指定波長的光不斷地增強。

1960 年, Theodore Maiman 實踐「利用受激輻射的原理來得到指定波長的光」這個理論,成功開發出「紅寶石雷射」。圖│wikipedia
1960 年, Theodore Maiman 實踐「利用受激輻射的原理來得到指定波長的光」這個理論,成功開發出「紅寶石雷射」。
圖│wikipedia

1962 年, Robert N. Hall 等人,提出利用外加偏壓,讓半導體中價電帶的電洞與導電帶的電子產生能階差,當高能階的電子躍遷回價電帶與電洞結合時,能量便會以「光子」的形式釋出,釋出的光子會在半導體 PN 接面之間,因為半導體的光滑晶格面,而不斷反射累積光能量,形成「共振腔」的結構,而設計出「半導體雷射」。

今日我們所稱的「雷射 (LASER) 」,就是「受激輻射所產生的光放大 (Light Amplification by Stimulated Emission of Radiation) 」的縮寫。

「雷射」其原理是先利用輻射,刺激特定的物質,讓物質內原子受到激發,使其最外層的電子躍遷至較高的能階。

雷射產生示意圖。圖│研之有物、廖英凱(資料來源│雷射知識網)
雷射產生示意圖。
圖│研之有物、廖英凱(資料來源│雷射知識網)

當電子處於高能階時,再給予特定頻率的輻射(光)照射,而使電子躍遷回較低的能階,並釋放出與照射光相同頻率的光子。如果,我們將產生光子的原子,利用兩個設置於雷射物質兩端的反射鏡,讓光子在雷射物質內來回反射,而繼續激發更多的電子躍遷,就能夠不斷累積同頻率的光子。

在這兩面反射鏡中,其中一面能完全反射光子,另一面則允許小部分光子穿過,所穿過的光子束即為雷射,具有發散低、功率高的特性。小至單一晶片的二極體雷射,大至用作促成核融合的釹玻璃雷射,都是雷射的應用尺度。

然而,對於微電子元件的設計上,雷射元件的「微型化」一直有其阻礙。這是由於能促成雷射功率不斷放大增強的關鍵,是由兩個具有反射效果的反射鏡或反射材質,所組成的共振腔。

在過往的研究中,共振腔受到「繞射極限」的限制,最短需要半個波長的大小,以波長 650 奈米的紅光雷射來看,共振腔的長度至少需要 325 奈米。相比起今日各類電晶體元件已能做到十幾奈米的尺寸,光子元件的微型之路,因為光學「繞射極限」這個基本物理限制,而遭受到了阻礙。

電漿子共振腔 縮小雷射元件的體積

以「電漿子共振腔」取代「傳統光學共振腔」,就能將雷射元件體積減少到遠小於可見光波長的奈米尺度!

2012 年,還在就讀清華大學物理學系博士班二年級的呂宥蓉,在果尚志教授的研究團隊中,將「單根氮化銦鎵奈米柱」與「電漿子共振腔 (plasmonic cavity)」 結合,取代傳統光學共振腔,將雷射元件體積減少到遠小於可見光波長的奈米尺度,開發出史上最小的電漿光子奈米雷射。並證明利用電漿子共振腔,可使半導體雷射元件不受限於光學繞射極限,而能大幅縮小雷射元件尺寸。

電漿光子奈米雷射的微觀結構:由下而上是矽基板上的磊晶銀膜、二氧化矽介電層、氮化銦鎵核殼結構奈米柱圖│研之有物、廖英凱(資料來源│Lu, Yu-Jung, et al. "Plasmonic nanolaser using epitaxially grown silver film." science 337.6093 (2012): 450-453.)
電漿光子奈米雷射的微觀結構:由下而上是矽基板上的磊晶銀膜、二氧化矽介電層、氮化銦鎵核殼結構奈米柱
圖│研之有物、廖英凱(資料來源│Lu, Yu-Jung, et al. “Plasmonic nanolaser using epitaxially grown silver film.” science 337.6093 (2012): 450-453.)

這是由於研究團隊所開發的電漿光子奈米雷射中,對於雷射功率的增益,並非利用傳統由兩面具有反射效果的材質所組成的光學共振腔,而是改以「電漿子共振腔」取代。

電漿子共振腔是由「金屬-氧化物-半導體 (Metal-Oxide-Semiconductor, MOS) 」所組成的奈米結構。這是利用金屬在與介電質(氧化物)的交界面,會有形成表面電漿極化子 (surface plasmon polariton, SPP) 的特性。

因此,研究團隊在矽基板上,與德州大學奧斯丁分校物理系施志剛教授合作,利用磊晶技術長出一片原子層平坦的銀膜 (Epi-Ag film) 作為低損耗的電漿子傳遞平台,在其上鍍一層五奈米厚的二氧化矽 (SiO2) 作為低折射率的介電層,最後放上利用分子束磊晶技術製作的氮化銦鎵/氮化鎵核殼結構奈米柱 (InGan@GaN core-shell nanorods) 作為雷射必須的增益介質。

氮化銦鎵/氮化鎵核殼結構奈米柱是一個各邊邊長 30 奈米的六角形晶柱。當外加能量激發奈米柱時,氮化銦鎵會釋放出「光子」。這些光子,與銀膜和二氧化矽介電層之間的表面電漿極化子共振頻率均在「可見光」波段,光子與表面電漿極化子之間並有一對一的對應狀態,能讓光子與表面電漿極化子產生耦合形成混成態。

表面電漿極化子的色散關係。當波向量(電子動量)較低時,表面電漿極化子的色散曲線(紅線),近似於光子(藍線)圖│研之有物、廖英凱(資料來源│ScottTParker)
表面電漿極化子的色散關係。當波向量(電子動量)較低時,表面電漿極化子的色散曲線(紅線),近似於光子(藍線)
圖│研之有物、廖英凱(資料來源│ScottTParker)

這讓「光子」因為與「電漿子」耦合,而被侷限在「二氧化矽介電層」之中不斷累積能量,如同傳統雷射的光學共振腔,但卻不受繞射極限的限制。

光運算、光通訊效能 有機會大幅提升

不受繞射極限的電漿共振腔,讓雷射元件的尺寸大幅縮小至數十奈米的級別,不僅尺寸上與今日積體電路製程常用的「互補式金屬氧化物半導體 (Complementary Metal-Oxide-Semiconductor, CMOS) 」可互相匹配,且同為 MOS 的結構。

「電漿子奈米雷射元件」的發明,意味我們將有機會在電子元件的架構上,利用雷射元件發展高速、寬頻、低功耗的光運算器與光通訊系統。

突破光學的繞射極限,為光運算與光通訊時代奠定了關鍵的基礎。但呂宥蓉認為這個領域在未來仍有許多有待發展的方向,例如研發「電激發光」的奈米雷射來取代現有的「光激發」奈米雷射;或是將雷射的應用環境,從目前主流的低溫研究拓展至室溫中,可為未來在積體電路上整合光電元件有所助益。

另外,該研究也有助於在生物醫學應用上發展超高解析生物影像;在材料上減少貴金屬的使用,改研發低損耗的陶瓷電漿子材料──氮化鈦、氧化銦錫、氮化鋯,此為在美國加州理工做博士後研究兩年期間獲得的靈感。同時因應目前單光子材料開始受到重視,呂宥蓉也計畫研究可以電壓控制之單光子的行為。

最終能更理解材質與光的特性,化為操作光的技術,應用至生物感測器、量子電腦、可撓式顯示器等尖端科技。

「我喜歡思考有什麼可以做,並真的做出來!」

傑出的研究成果與高瞻遠矚的發展眼光,往往來自長年努力的累積與幸運的眷顧。呂宥蓉在碩二、博一期間連續在以第一或主要作者,登上 APL 封面論文,博二時更以不受限於光學繞射極限的「電漿光子奈米雷射」研究成果,刊登於 Science 期刊。

面對如此進展迅速的研究成果,呂宥蓉謙虛地表示,這其實沒有什麼特別的秘訣,也不能算是進展比別人快,只是把一天 24 小時當成 36 小時用,犧牲了睡眠與娛樂機會,才能有這些成果。

奮不顧身的研究投入,植基於對科學的熱愛、對自我專長的理解、與環境的支持。呂宥蓉從大學期間,就發現自己熱愛實驗與儀器組裝、操作,喜歡想像並嘗試各種材料與理論的組合。更重要的,是求學期間指導教授果尚志老師,認為研究生應有獨立研究能力與追求科學價值的治學理念。

並不見學霸般地狂氣,難以忽視的亮麗外型更不掩對科學探索的赤子之心,與對無垠知識的好問則裕。圖│廖英凱
並不見學霸般地狂氣,難以忽視的亮麗外型更不掩對科學探索的赤子之心,與對無垠知識的好問則裕。
圖│廖英凱

知止而後有定,定而後能靜,靜而後能安,安而後能慮,慮而後能得。

呂宥蓉特別引用了《大學》裡的前人智慧,與同在研究之路上的學弟妹們勉勵,也為今日的成就下了安心踏實的註腳。

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界