Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
找到植物吸收養分的關鍵──專訪蔡宜芳 │ 研之有物 - 中央研究院 - 分子生物研究

找到植物吸收養分的關鍵 ─ 專訪蔡宜芳

植物的「硝酸鹽轉運蛋白」為什麼重要?

過去僅知道植物會利用氮肥中的硝酸鹽做為養分來源,而利用分子生物學的技術,可探討植物吸收硝酸鹽的機制,及如何有效利用硝酸鹽等未解之謎。藉由了解轉運蛋白的作用機制,進而提升植物利用氮肥的效率,從最微小的基因尺度,用科學方法來改善農業、環境以及能源等問題。
長年投身於研究植物硝酸鹽轉運蛋白,中研院分子生物研究所特聘研究員蔡宜芳的研究成果,不僅刊登於國際頂尖期刊 Cell 中,更於日前獲頒臺灣傑出女科學家獎。圖│研之有物
長年投身於研究植物硝酸鹽轉運蛋白,中研院分子生物研究所特聘研究員蔡宜芳的研究成果,不僅刊登於國際頂尖期刊 Cell 中,更於日前獲頒臺灣傑出女科學家獎。
圖│研之有物

從大學時開始進入實驗室做實驗,到現在擁有自己的研究團隊,蔡宜芳也帶領著下一個世代繼續研究。她向我們分享這一路走來的點點滴滴,望著窗外一片青綠,蔡宜芳談起為什麼願意投身植物的研究,她笑說:「因為覺得植物很美,植物默默在那邊生長,無怨無悔地提供我們人類養分。」

問植物是如何吸收硝酸鹽作為養分,及其中轉運蛋白如何運作?

答植物可以吸收的兩種氮源型態為:硝酸鹽、氨鹽。不管是施用什麼形式的氮肥,土壤中的細菌都會幫忙轉換成植物可以吸收的型態。而在土壤中,由於硝酸鹽的含量比較高,所以植物主要是吸收硝酸鹽進入體內作為氮源。

我們在三十年前就知道氮肥很重要,並且多是以硝酸鹽形態被植物吸收,但相關的研究主要集中在傳統生理探討,並不知道在這個機制裡,植物體內負責吸收硝酸鹽的蛋白是什麼。

細胞膜是通往細胞內外的必經路障。而硝酸鹽是帶電離子,無法自己通過由脂質構成的細胞膜,必須由蛋白質的協助才能通過。

1990-1993 年,我在美國做博士後的時候,植物的分子生物技術才剛發展起來。在那之前的實驗多是測植物吸收硝酸鹽的能力;或是在不同環境下,吸收能力變化等較傳統的生理實驗。然而,我們以前都不知道,是什麼樣的蛋白質在負責硝酸鹽的通輸。

因為這個蛋白質很難找,差不多有兩年的時間,我經常整天都坐在電生理實驗檯上。在當時的技術背景下,需要建立新的研究方法。當時的實驗室老闆也曾經一度想停掉這個計畫案,擔心我白白花費太多時間在這上頭,但我想的是既然都作到一半了,就繼續堅持下去。

1994 年回臺灣之後,我們團隊陸續發現,位於植物細胞膜上的硝酸鹽轉運蛋白 CHL1 身兼數職。

CHL1 蛋白不僅轉運硝酸鹽進入細胞內進行運用,更會感測土壤環境中的硝酸鹽濃度後,調控下游基因表現來幫助植物更有效率地利用硝酸鹽。透過研究此轉運蛋白,我們可更進一步了解農作物利用氮肥的原理與機制。

位於細胞膜,身兼數職的硝酸鹽轉運蛋白 CHL1。圖│研之有物 (資料來源│C.-H. Ho, S.-H. Lin, H.-C. Hu, and Y.-F. Tsay* (2009) CHL1 Functions as a Nitrate Sensor in Plants. Cell 138, 1184–1194.)
位於細胞膜,身兼數職的硝酸鹽轉運蛋白 CHL1。
圖│研之有物 (資料來源│C.-H. Ho, S.-H. Lin, H.-C. Hu, and Y.-F. Tsay* (2009) CHL1 Functions as a Nitrate Sensor in Plants. Cell 138, 1184–1194.)

問從早期的植物研究方法,到現今的分子生物研究技術,如何在這類研究中進步、成長?

答在有分子生物技術之前,多是進行遺傳學或生理學的研究。很早以前,荷蘭的研究團隊就已經找到無法正常吸收硝酸鹽的阿拉伯芥突變株 (mutant),並開始研究它的生化特性,確認它就是硝酸鹽 (nitrate) 吸收壞掉的突變株,但當時因為沒有分子生物技術,而無法做進一步研究。

我常說,在我十歲的時候這個突變株就在了,可是因為沒有分子生物學的技術,而無法確知是哪個基因出問題導致它無法吸收硝酸鹽。

在 1990 年,分子生物技術剛建立起來,而我就利用這個工具去找。找到這個基因後,我們也開始做一些延伸性研究。由於在植物體內有另外 52 個基因和 CHL1 同屬一個蛋白家族,我們團隊也逐一地去了解它們的基因功能。經過數年研究,了解到植物是如何吸收硝酸鹽進來,而後送往地上部,又如何在不同環境下重新分配不同組織內的硝酸鹽。

我們發現,植物會想盡各種策略來確保年輕葉片有足夠的硝酸鹽,並且在開花結果後,植物也會把硝酸鹽輸送給種子做利用。

這樣一系列的反應都被研究出來後,就可了解硝酸鹽在植物中輸送的各種路徑。

小學跟中學常考的一個植物學考題是:根據教科書的教條,認為無機的氮源(例如硝酸鹽)只會在木質部中輸送,有機的氮源(例如胺基酸)才會在韌皮部篩管中輸送。但是,我們的研究發現教科書的教條需要修改,硝酸鹽可以在韌皮部篩管中輸送,而且這個輸送機制對植物的生長很重要。

另一部分,我也對蛋白質的調控感興趣。植物本身有兩種硝酸鹽的吸收系統,在土壤硝酸鹽含量很低時,負責作用的系統為「高親和性系統」;在土壤中的硝酸鹽含量很高時,負責作用的系統為「低親和性系統」。植物利用此兩個吸收系統去應對外界多變的硝酸鹽環境。

以前科學家都認為這是兩個獨立的系統,直到 2003 年我們實驗室的博士班學生劉坤祥研究發現:轉運蛋白 CHL1 可藉由磷酸化的轉換,感受到細胞外面的硝酸鹽濃度變化,來調節自身的吸收模式。

(左圖) 當環境中硝酸鹽濃度較低時,CHL1 會因磷酸化,而成為高親和性的轉運蛋白。(右圖) 當硝酸鹽濃度較高時,CHL1則被去磷酸化,以轉換成低親和性的轉運蛋白。圖│K.-H. Liu and Y.-F. Tsay*. (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.EMBO J.22:1005-1013.
(左圖) 當環境中硝酸鹽濃度較低時,CHL1 會因磷酸化,而成為高親和性的轉運蛋白。
(右圖) 當硝酸鹽濃度較高時,CHL1則被去磷酸化,以轉換成低親和性的轉運蛋白。
圖│K.-H. Liu and Y.-F. Tsay*. (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.EMBO J.22:1005-1013.

這個研究告訴我們:植物有能力感應外界環境的硝酸鹽變化;不只是轉運蛋白會改變,植物也知道濃度低的時候省著點用、濃度高就貯存,因應變化來調控基因表現。這一系列反應很快,三十分鐘就會誘發基因表現。

我曾有一次聽植物鈣離子傳導的演講,演講者說:「實驗發現傷害植物的時候,鈣離子的訊息會增強。」所以會不會有可能當你吃生菜沙拉的時候,植物其實是會痛、有反應的?因為在自然界中,植物不能動,所以它對環境一定要有很好的偵測方法,還有因應策略。不管種子在哪裡發芽,都要想盡辦法在那個環境中存活下來。

問過往普遍認知氮肥可幫助作物生長、提供產量,但近年發現氮肥會影響生態、也有食物殘留風險等,這如何能透過生物技術、研究來改善?

答1950 年代的綠色革命發現氮肥可以讓產量翻倍,人口因此開始增加。原本的肥料是取自海鳥糞,後來找到了硝石礦,但仍是不足以應付需求,因此德國化學家弗里茨‧哈伯 (Fritz Haber)找到方法把氮氣轉換成植物能應用的形式。但氮氣的鍵結是很強的,要打斷鍵結要高溫高壓,是非常耗能的事,以至於全世界約有 1~2% 能源是花費在製造氮肥。

氮肥到土壤裡會被細菌轉換成硝酸鹽,但硝酸鹽不易保存在土壤中,下雨就會沖刷、進入到水循環。如此耗能生產的氮肥,施用下去田間,其實只有一半或少於一半能夠被植物利用。而湖川海洋中過多的硝酸鹽會造成優養化作用,形成藻華、Dead Zone,這其實是全球性的生態影響。

因此,我們希望想辦法解決這個問題,讓植物吸收硝酸鹽的效率好一點,進而減少環境的汙染、製造氮肥的能源消耗。

氮肥供應充足的時候,硝酸鹽養份主要會送往成熟葉;但在缺乏氮肥時,植物會把儲存在老葉的硝酸鹽運送到嫩葉。看到這種轉移的情況,我們就想:如果能夠強化這種轉移養分的機制,是不是就能夠加強氮肥的利用效率?

如下圖,我們研究發現,葉子中有一個 NRT1.7 基因有這個作用,如果能加強 NRT1.7 的基因表現,或是活化參與這個轉移機制的蛋白質活性,就可以提高植物利用氮肥的效率,進而促進植物生長。目前已經在阿拉伯芥實驗成功,也已取得臺灣和美國的專利,現在則是在水稻、菸草上進行試驗,這其實是個很漫長的過程,但一旦成功,對於生態環境是一大助益。

阿拉伯芥中,調控硝酸鹽吸收的基因 NRT1.11, NRT1.12 和 NRT1.7 ,透過不同路徑養護嫩葉。圖│Ya-Yun Wang∗, Yu-Hsuan Cheng∗, Kuo-En Chen and Yi-Fang Tsay (2018) Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 69:27.1–27.38.、S.-C. Fan, C.-S. Lin, P.-K. Hsu, S.-H. Lin, and Y.-F. Tsay* (2009) The Arabidopsis Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate. Plant Cell 21: 2750–2761.
阿拉伯芥中,調控硝酸鹽吸收的基因 NRT1.11, NRT1.12 和 NRT1.7 ,透過不同路徑養護嫩葉。
圖│Ya-Yun Wang∗, Yu-Hsuan Cheng∗, Kuo-En Chen and Yi-Fang Tsay (2018) Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 69:27.1–27.38.、S.-C. Fan, C.-S. Lin, P.-K. Hsu, S.-H. Lin, and Y.-F. Tsay* (2009) The Arabidopsis Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate. Plant Cell 21: 2750–2761.

對我來說,要一直用新的技術來回答新的問題,因為新的技術一定能夠讓問題的答案更深入,但我認為最重要的還是找到你要問的問題。而我最想問的問題是:植物是如何去處理它的養分,來做它最好的生長反應?研究過程中經常解決了一個問題後,還會有下個問題。

我一直喜歡植物研究的一個特色是,你可以從分子生物的尺度、到整株植物的生理去探索你的問題的答案,並發現這一切都相互呼應。

因為太專注於分子生物層面的東西,有時候是細微到只看到蛋白質的交互作用,但這樣細微作用如何影響到整個作物的生長,甚至是最後到農業的產量,這是我最感興趣的。

問當初為何會投入植物、科學的研究?

答我覺得投入研究的重點是「好奇」。你一定要有好奇心,會想追求一些新問題的答案。一名科學家必須要有好奇心,同時也需要有你的邏輯思考能力去尋求答案。

我大學是台大植物系的,會就讀植物系其實是個很浪漫的原因──只是因為我很喜歡植物而已。我喜歡走進森林的感覺,讓我很想去了解植物。

大四時,進到實驗室是做組織培養,那時候是很熱門的題目,因為很新奇。植物組織加入不同荷爾蒙,就會變成地上部的葉子或地下部的根,那是由於植物細胞有全能分化的能力。組織培養雖然有趣,但知其然不知其所以然,完全不知道是什麼原因造成這些變化,無法滿足我喜歡打破砂鍋問到底的個性,所以碩士就開始就往分子生物的領域走。不過因為那時植物的分生研究還沒發展起來,我就先從研究酵母菌開始,把分生基礎打好;等到讀完博士班,開始找研究題目、看論文時,發現仍是植物相關研究最能觸動我的神經,所以我就決定要再回去研究植物。

我覺得在科學的養成上,技術是一環,但邏輯思考的養成比技術的養成更難。邏輯思考的養成更要慢工出細活,很難一步到位。

看論文時,去找到這篇論文的核心價值是很重要的。做研究還要知道在這個領域中,最重要的問題是什麼。畢竟,找到問題後就是賭博了。要知道哪個方向的研究值得投資,要知道實驗資料和數據所代表的意義是什麼,如何解讀數據也是很重要的邏輯思考訓練,這些將都會成為你設計新的實驗時的依據。

其實,最辛苦的是剛開始設立自己的實驗室的時候。因為要訓練人,不是自己做就好,還要承擔所有的成敗。而且科學也是需要對外溝通,告訴資助單位、期刊還有大眾這個研究的重要性為何。

女性從事科學研究有多一層的考驗,因為社會對女性有許多的期許與要求,要兼顧家庭、事業兩方會是蠻大的挑戰。我覺得我算是蠻幸運,先生對我支持度也很高。在很多時候,女性碰到在家庭跟事業之間做抉擇時,會較容易放棄自己的事業。因此我常跟女學生說:對於家事能夠取得幫忙,就去取得,妳可以克服的,女性也可以顧全自己的事業。

2018-06-28

採訪撰文|江佩津
美術設計|張語辰

延伸閱讀

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界