Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
我把物質世界和生活問題的解答,都藏在低溫世界了!──陳洋元 │ 研之有物,中央研究院物理研究

我把物質世界和生活問題的解答,都藏在低溫世界了!──陳洋元

為什麼要研究「低溫物理」?

低溫領域不只是比較冷的世界而已,接近絕對零度的低溫,可以讓科學家觀察到電子的特性而了解物質世界。而將液態氮用於工程與生物,更能設計出能解決湧水地質工程難題的解法、與對生態無毒無害的紅火蟻防治方法。
中研院物理所的陳洋元研究員,絕招像是《ONE PIECE》漫畫中,青雉的冷冷果實能力。從打造臺灣第一台低溫比熱系統開始、配合稀冷機,為低溫物理研究奠定了良好環境,更利用低溫的特性解決生活問題。 圖│廖英凱
中研院物理所的陳洋元研究員,絕招像是《ONE PIECE》漫畫中,青雉的冷冷果實能力。從打造臺灣第一台低溫比熱系統開始、配合稀冷機,為低溫物理研究奠定了良好環境,更利用低溫的特性解決生活問題。
圖│廖英凱

冰凍時刻:挖隧道工程

低溫的運用,可不只有在微觀世界的物理研究而已,陳洋元與團隊將他們對低溫技術的理解,運用到真實世界,解決生活中所發生的問題。

1988 年起,臺灣開始興建雪山隧道,由於隧道施工路徑,行經了多數斷層、剪裂帶與地下湧泉,導致施工過程中的全斷面隧道鑽掘機 (潛盾機) 多次遭遇大量湧水而受阻。1997 年 12 月,更有一部機組因隧道崩塌而損毀報廢,因此,在湧水環境下依然能有效率地施工,即成雪山隧道工程的關鍵。

陳洋元得知施工過程的湧水阻礙後,想到百年前英國開挖海底隧道、以及俄國會特別利用冬天結冰期來施工的冰凍工法,便主動寫信建議當時的交通部蔡兆陽部長,並提出構想簡報。1999 年,負責雪隧施工的榮工處謝玉山副主任,也提供了一個研究計畫,陳洋元與台灣科技大學廖洪鈞教授共同組成實驗室團隊,利用液態氮試驗冰凍工法,在雪隧的豎井施工地點嘗試施工,並取得了成功凍土開挖的成果。

在雪隧豎井開挖前,陳洋元團隊先在中研院區試驗。此時液態氮正由冷凍管(白色)在冷凍地盤中。 圖│陳洋元提供
在雪隧豎井開挖前,陳洋元團隊先在中研院區試驗。此時液態氮正由冷凍管(白色)在冷凍地盤中。
圖│陳洋元提供
用液態氮將土壤整塊結凍後,就能順利開挖出坑道,環形為冷凍後開挖出之冰牆。 圖│陳洋元提供
用液態氮將土壤整塊結凍後,就能順利開挖出坑道,環形為冷凍後開挖出之冰牆。
圖│陳洋元提供

冰凍工法的原理相當簡單直觀,就是利用溫度僅 77 K (−195.79 °C) 的液態氮,使土壤中的水分結冰。土壤結冰後變得如岩石一般堅硬,開挖的過程中就能避免土壤因含水量過多、土質鬆軟而坍塌。

但是,如何讓低溫的液態氮,可以準確冷凍到需要開挖的部位,並確保冷凍的強度,則是實踐冷凍工法的困難之處。對此,研究團隊自行設計了液態氮冷卻、排氣與監測的工程系統,並透過電腦模擬估算液態氮的冷凍時間,成功開發出能開挖豎井的冷凍工法。

陳洋元設計的土壤冷凍實驗配置圖。圖│研之有物(資料來源│陳洋元提供)
陳洋元設計的土壤冷凍實驗配置圖。
圖│研之有物(資料來源│陳洋元提供)

但很可惜的,由於雪隧施工過程的工程考量、工期壓力與學術研究落實為工程應用所需的時程,陳洋元團隊的冷凍工法,未能即時被雪隧的施工單位所採用。陳洋元認為,這代表了學術研究和技術落實的差異。

學術研究雖然可以驗證新技術是否有成功的機會,但要讓技術開發完成,仍需要實作單位投入組織團隊與資源。

不過很快地,冷凍工法又得到了來自工地現場的呼喚。2006 年大台北地區開始大規模建設與更新地下汙水道,在地下汙水道的豎井興建工程中,遇到例如華江橋一帶地下水位較高的地方,豎井深處會有湧水而完全無法開挖,即使用抽水機水玻璃亦無法克服大量湧入的地下水,因而嚴重延誤工期,而造成施工廠商的重大負擔。因此,陳洋元老師接受了施工廠商的委託,設計出能在豎井底層使用的冰凍工法,解決了地底水平開挖工程的湧水問題。

(左) 在豎井內透過推進機,水平開挖出汙水下水道(右) 利用液態氮冰凍工法,將豎井周圍的土壤結凍,改善開挖過程的湧水問題圖│陳洋元提供
 在豎井內利用液態氮冰凍工法,把豎井周圍的土壤結凍(右),改善開挖過程的湧水問題,再透過推進機,水平開挖出地下汙水道(左)。
圖│陳洋元提供

回顧起運用知識投入解決工程問題的經驗,陳洋元認為臺灣的產學合作與技術轉移,仍有相當多傳統思維需要突破。像是中研院雖有開發冰凍工法的經驗,但近幾年一些政府重大工程施工時,寧可高價雇用日本冰凍工法的團隊,也不願自行開發國內技術。

兩棘矛:紅火蟻防治

不只是工程上,陳洋元團隊也將液態氮運用於紅火蟻防治。2001 至 2002 年間,紅火蟻透過運輸的貨櫃入侵到臺灣,成為影響農業、生態與人類安全的外來入侵種。利用熱水、化學藥劑等防治方法效果均有限,且須留意藥劑對生態的副作用。2004 年,當時的中研院李遠哲院長在立法院備詢與記者提問時,提出可利用液態氮消滅紅火蟻的構想。會後,李遠哲院長指派陳洋元開發液態氮撲滅紅火蟻的技術。

陳洋元與中研院生物多樣性中心的馬堪津研究員合作,發現紅火蟻在低於 -17°C 的環境會完全死亡;陳洋元同時也委由中研院物理所精工室的技師,打造在紅火蟻巢灌注液態氮的金屬管路。試驗結果發現,撲滅成效可完全根除蟻巢內的紅火蟻群與蟻后,也毫無任何汙染與副作用。

利用液態氮冷凍紅火蟻蟻巢。圖│研之有物(資料來源│陳洋元提供)
利用液態氮冷凍紅火蟻蟻巢。
圖│研之有物(資料來源│陳洋元提供)

除了進一步技轉、推廣液態氮防治技術,陳洋元也研究如何有效定位紅火蟻蟻巢的位置。團隊曾利用軍用級紅外線偵測儀,企圖偵測紅火蟻蟻巢的溫度來定位,原本想法是蟻巢的溫度可能高於一般土壤,但實際上因為蟻巢通風良好、溫度反而較低。由於紅外線偵測儀不易偵測出剛形成的較小蟻巢,陳洋元因而進一步開發更有效的「紅火蟻偵測犬」。

陳洋元後續將紅火蟻屍體樣本寄至屏科大與祁偉廉獸醫師合作,訓練出能有效定位紅火蟻位置的偵測犬。偵測犬搭配液態氮與其他防治工法,近年來持續套用到大學校園、桃園機場、松山機場、淡水輕軌、台北花博等地的紅火蟻防治,以免紅火蟻破壞重要的電線或飛航線路,並需搭配定期觀測追蹤。近年來,日韓等國也因有紅火蟻防治的需求,而尋求陳洋元團隊的技術協助。

自製低溫比熱系統,探究低溫世界

無論是冰凍工法、液態氮防治紅火蟻,這些應用都是基於對「低溫物理」的成熟了解。但時間回溯到更早之前,最初發展低溫物理的科學家,其實有他們好奇、想探究的現象。

例如,今日對於低溫超導體的興盛研究,肇始於 1911 年時,荷蘭科學家海克.卡末林.昂內斯 (Heike Kamerlingh Onnes) 發現水銀在溫度 4.2K 時,電阻會完全消失、成為超導體。伴隨著低溫環境與低溫技術的出現,科學家開始發現在低溫狀態中,物質的特性有了超乎預期的現象。

從材料研究的觀點來看,微觀尺度的物質世界,其實取決於材料中電子的交互作用。物質藉由不同的原子組成、排列,決定了物質的特性;藉由原子的震動,呈現出熱的現象;藉由電子的流動,則呈現出了電流。

伴隨量子力學的發展,物理學家利用「聲子」的概念,來理解原子的排列與震動,在過去七十年來,已累積了大量理論與實驗的成果,而造就了今日科學對晶體的理解。然而,對於「電子」性質的理解,卻因為聲子振動時的現象,會掩蓋電子的物理現象,使得對電子的研究明顯晚於聲子的研究進展。直到低溫技術的出現與變革:低溫環境不斷地改善、不斷地下探人類能創造的最低溫。

在低溫環境中,聲子如同結凍般,大幅減少了聲子振動所帶來的影響,而使得電子的特性,終於能開始被觀察研究。

1980 年代,正值低溫物理發展的高峰。1989 年,陳洋元從加州大學回到中研院物理所,建立了奈米材料與低溫物理實驗室,開始積極發展低溫技術。環顧當時臺灣沒有一台自製的低溫比熱儀,而比熱的量測在凝態物理研究中是相當重要的元素,可以提供聲子、電子、磁性、相變等訊息,像是比熱對於超導材料的研究便不可或缺。

因此陳洋元決定發展臺灣自己的低溫比熱系統,此系統最關鍵的就是乘載樣品的晶片座、電子量測系統以及電腦控制程式。

陳洋元自行開發的低溫比熱系統。 圖│陳洋元提供
陳洋元自行開發的低溫比熱系統。
圖│陳洋元提供
2010 年開發的第五代比熱量測晶片,Ni-Cr 與 RuO2 薄膜由無塵室半導體製程完成。晶片由四條金線懸於真空中,與控溫之銅座相連接。 圖│陳洋元提供
2010 年開發的第五代比熱量測晶片,Ni-Cr 與 RuO2 薄膜由無塵室半導體製程完成。晶片由四條金線懸於真空中,與控溫之銅座相連接。
圖│陳洋元提供
比熱量測晶片,中間的銀色方塊為樣品(重量約 1~15 mg)。 圖│陳洋元提供
比熱量測晶片,中間的銀色方塊為樣品(重量約 1~15 mg),下方為晶片座。
圖│陳洋元提供

如上方的圖片所示,量測晶片上有加熱與溫度感測薄膜,懸吊於真空中,利用加熱、放熱時產生的溫度變化,可於溫度 0.3-300K、高壓、磁場的環境下,測量微小樣品的比熱,例如二鋁化鈰 (CeAl2) 在奈米尺寸會呈現與塊材不同的比熱。過去 30 多年運用此低溫比熱系統發表之論文含 Physical Review Letters (PRL)、Physical Review B (PRB)、Applied Physics Letters (APL) 等計 70 餘篇。

二鋁化鈰 (CeAl2) 80 nm 奈米樣品的低溫比熱與塊材截然不同,凸顯了奈米科技的獨特性。 圖│陳洋元提供,取自 Size Dependence of Heavy Fermion Behavior in CeAl2
二鋁化鈰 (CeAl2) 80 nm 奈米樣品的低溫比熱與塊材截然不同,凸顯了奈米科技的獨特性。
圖│陳洋元提供,取自 Size Dependence of Heavy Fermion Behavior in CeAl2

設置「稀冷機」,讓低溫更低溫

進行低溫物理研究時,若單純只使用液態氦,會受限於液態氦的沸點,難以繼續降至更低的溫度。對此,中研院於 1995-1996 年間,設置了臺灣第一台稀釋致冷機 (dilution refrigerator),利用不同比例 4He 與 3He 的蒸發,最終能達到 0.035K 的超低溫度。

我們可以簡單想像,在單純熱交換的世界中,例如將冰水與溫水混合,所能得到的最低溫,一定會高於冰水的溫度。因此,若無法取得比 4He 與 3He 沸點更低的物質,則實驗環境勢必無法低於 4He 與 3He 的沸點溫度。

因此,科學家運用「蒸氣壓」能影響「沸點」的特性,來取得更低的溫度。就像在高山上,氣壓較低時,水的沸點也會降低、而更容易煮沸。若將 4He 與 3He 置於更低表面蒸氣壓的環境中,則可以使兩者的沸點分別降至 1.5K 與 0.3K。

稀冷機,則更進一步運用物質在「相轉變」時,會帶走熱量的特性來降溫。

如下圖所示,稀冷機中的混合室 (mixing chamber) 內有兩種由不同比例 4He 與 3He 所組成的液態相,形成相界 (phase boundary) 明顯的兩相分離。混合室中 4He 較多、 3He 較少的部分,以管路連接一以 4He 為主的混合物容器 (still) ,當對 still 抽氣時,會使混合室中的 3He,先從 3He 較多的液相,跨越第一個相界至 3He 較少的液相,再跨越至 still。

稀冷機的裝置示意圖:(1) mixing chamber 中有兩個不同 3HE 和 4HE 組成的液態相。(2) 當對 still 抽氣時,mixing chamber 中濃相區(深藍色區塊)的 3HE 會被抽走,下層中稀相區(淺藍色區塊)中的 3HE 會穿越過兩相間的界面,補充上層濃相區被抽走的 3HE,此種類似蒸發的作用會帶走熱量。(3) 3HE 再穿越至 still 區蒸發、將熱量帶走,而能降低溫度。 圖│研之有物、廖英凱(資料來源│陳洋元)
稀冷機的裝置示意圖:
(1) mixing chamber 中有兩個不同 3HE 和 4HE 組成的液態相。
(2) 當對 still 抽氣時,mixing chamber 中濃相區(深藍色區塊)的 3HE 會被抽走,下層中稀相區(淺藍色區塊)中的 3HE 會穿越過兩相間的界面,補充上層濃相區被抽走的 3HE,此種類似蒸發的作用會帶走熱量。
(3) 3HE 再穿越至 still 區蒸發,被抽氣機抽回第一次相的混合室循環,補充 3HE。

圖│研之有物、廖英凱(資料來源│陳洋元)

當氦 3 跨越氦 3 較多與氦 4 較多的兩個液體界面時,就如同蒸發帶走熱量一般,可使混合室的溫度降低至 10-3K 的溫度狀態。以此技術,目前的世界紀錄,早已超過 10-12K 的程度。

陳洋元笑稱,當年由於稀冷機技術相對複雜而多數學校無法設置,中研院的稀冷機與良好的低溫環境,就像是一個創造了一個「dilution 俱樂部」,吸引了許多低溫物理的人才來此研究。

不過,雖然可利用液態氦來達到低溫,但液態氦無法人工合成、所費不貲,是低溫研究的重大花費。因此,陳洋元在中研院物理所旁,建立了「氦氣液化系統」,此系統能回收物理所實驗室本來排放到大氣中的氦氣,並重新壓縮降溫與液化,從而回收氦氣循環使用,節省資源並降低研究花費。

氦氣液化系統:從物理所回收的氦氣,會先儲存在上方的氣球,再分裝到氣瓶中。圖│研之有物、廖英凱
氦氣液化系統:從物理所回收的氦氣,會先儲存在上方的氣球,再分裝到氣瓶中。
圖│研之有物、廖英凱
氦液化機室:回收的氦氣,經過這台機器液化後,再次用於物理所的低溫實驗。圖│研之有物、廖英凱
氦液化機室:回收的氦氣,經過這台機器液化後,再次用於物理所的低溫實驗。
圖│研之有物、廖英凱

這幾間實驗室啊,還有隔壁的那兩間工廠……是當年我規畫蓋出來的啊

走在中研院物理所建物之間,陳洋元悠悠地這麼說。從低溫儀器的開發,到低溫物理的基礎研究;從實驗室裡的學術環境,到工地與蟲害的實際應用,陳洋元是少數投入如此廣泛與多樣領域的研究者。

回顧過往,這也許和陳洋元與團隊從 1989 年開始,長期耕耘中研院物理所的基礎建設有關,包含建立氦氣液化系統,協助建立精工室、以及位於物理所地下室的磁性實驗室和 X 光實驗室。

如同基礎研究之於整體學術發展的重要,基礎研究環境的興建與營運,可以帶來前端研究的成果;而立於基礎知識之上,我們更能發現複雜生活問題的解決方法。

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界