Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
衡量「人生的選擇結果」有方法──專訪許育進 │ 研之有物 - 中央研究院 - 處理效果、計量經濟學研究

衡量「人生的選擇結果」有方法──專訪許育進

經濟計量研究

人生由一連串「選擇」組成,不同選擇會導致不同結果。如何衡量人們的抉擇對後果有什麼影響?這是經濟學家感興趣的命題。「衡量」,總要有個客觀且避免偏誤的計量方法,而中研院經濟研究所的許育進副研究員,專門設計給經濟學家使用的「統計方法」。
獲得傑出研究獎、年輕學者奬等眾多獎項的許育進,與陪伴他到處遊歷的小雞(自製羊毛氈)。圖│研之有物
獲得傑出研究獎、年輕學者奬等眾多獎項的許育進,與陪伴他到處遊歷的小雞(自製羊毛氈)。
圖│研之有物

經濟學家眼中的「選擇」

「通常跟親朋好友說我是研究經濟學的,接下來他們就會問我:要買哪支股票?」許育進笑說大家對於經濟學的印象,而這背後也反映出一個人性──人們對於「選擇」的猶豫,以及希望能預測「選擇的後果」。

每天睜開眼,人們就面對不同的選擇題。有些選擇的後果無傷大雅,有些卻讓人懊悔「千金難買早知道」。這看在經濟學家許育進的眼中,是非常有趣的研究題材。

人們有沒有做某件事?對結果有多少影響?我們試圖設計方法來衡量。

問如何衡量「有做」和「沒做」對結果有多少影響?

答這是計量經濟學中,「處理效果」探討的問題。「有做某事」和「沒做某事」對結果有多少影響?這中間的影響差異,就是經過某個行為「處理」之後的效果,統計上可透過平均數 (mean)、分佈 (distribution)、分位數 (quantile) 等量化資訊來呈現。

處理效果 (treament effect) 的概念。圖│研之有物
處理效果 (treament effect) 的概念。
圖│研之有物

其實,處理效果 (treament effect) 最早源自於藥學,比較「有吃藥的病人」和「沒吃藥的病人」,對於病情影響的顯著差異,藉以了解某種藥物 (treament) 治療後有沒有效果 (effect)。這個概念現在普遍應用於計量學領域,可用來比較「平行時空」中人們選擇採取某種行為後,產生的結果差異。

問研究「處理效果」主要困難之處、跟解決方法?

答例如,若想研究「一個人有沒有讀大學」對於「未來的收入」有沒有影響,就得比較「一個人有讀大學」和「同一個人沒有讀大學」的收入差異。

但現實世界中,我們不可能同時踏上兩條人生路徑,存在選擇方案 A 的我,就不存在選擇方案 B 的我。因此,我們分析的樣本資料中,只會看到同一人的其中一種狀態(有讀大學/沒讀大學)、與現在的收入區間。

這是研究處理效果最困難的地方──如何推測「平行時空」中另一種結果?

若將「一個人有沒有讀大學,對收入有沒有影響」這個研究題目視覺化,就更容易了解「缺乏樣本資料」的分析難題。圖│研之有物
若將「一個人有沒有讀大學,對收入有沒有影響」這個研究題目視覺化,就更容易了解「缺乏樣本資料」的分析難題。
圖│研之有物

生命科學研究中,可透過隨機試驗 (random assignment) 來推估樣本資料、得到分析結果,然而經濟學無法使用隨機的統計方法。因為「有沒有讀大學」在真實情況中並非丟銅板隨機決定,而是受到許多「解釋變數」影響所做出的選擇,例如家庭經濟狀況、父母教育程度等等。

因此,我們的統計方法是先控制這些解釋變數後,再找出個人特徵相近的樣本(例如:家庭年收入相當、父母教育程度相同等等),作為平行時空的對照組──也就是「做出另一個選擇的我」,藉此推估對照組的收入區間,再統計分析兩組收入的差異,如下圖所示。

假設每個人在解釋變數(個人特徵)影響下,會有自己的選擇(是否讀大學),那麼,控制這些變數、找出個人特徵相近者,就能作為「做出另一個選擇的我」的對照組。圖│研之有物
假設每個人在解釋變數(個人特徵)影響下,會有自己的選擇(是否讀大學),那麼,控制這些變數、找出個人特徵相近者,就能作為「做出另一個選擇的我」的對照組。
圖│研之有物

我們的這種統計方法,可以用來回答很多關於「選擇結果」的問題。例如,媽媽第一胎懷孕期間有沒有抽菸,對新生兒的體重是否有影響?我們的實證研究加上「孕婦的年齡」做比較,分析結果顯示:孕婦的年齡越大,懷孕時吸菸對於新生兒的負面影響越顯著,也就是新生兒的平均體重會變得越輕(註一)。

另外,處理效果的統計方法,也可運用於檢視社會福利政策的效果,例如,我們分析 National Supported Work Demonstration (NSW) 職業培訓資料,來探討「有沒有參加職業培訓」會否提升未來收入?

我們的實證結果顯示:「有參加職業培訓的我」工作收入確實會比「沒有參加職業培訓的我」還高(註二)。必須說明的是, NSW 資料庫裡的樣本是較難就職的族群,包含貧困家庭的媽媽、年輕輟學者、更生人等等,並非指大眾勞工或上班族。

問回到親朋好友的提問,經濟學家知道要買哪支股票嗎?

答我們設計的統計方法,可以從多個投資組合中,找出哪個投資組合會賺錢。

例如,若想知道 100 支股票中,哪一支股票會賺錢。那我們就設定 H0 虛無假設為:「這 100 支股票中,有一支股票的利潤平均數 ≤ 0,或是 ≤ 自訂的標準數值 (benchmark value) 」,接著統計檢定這 100 支股票的資料,看看哪支股票的檢定結果「拒絕」這個 H0 虛無假設,就是會賺錢的股票,因為它的利潤平均數是 > 0,或是 > 自訂的標準數值。

需注意的是,這統計檢定過程很容易產生偏誤,也就是 data snooping bias。

例如,若把 100 支股票的資料分開 t 檢定,且每次 t 檢定都是以 95% 信心水準執行的話,100 次 t 檢定累計高達 0.994 的機率會與實際結果有偏差,這就產生了一種統計偏誤的問題 (data snooping bias)。用白話文來說,這問題可能是把其實不賺錢的股票,錯當成會賺錢的股票。

如果研究題目是:「100 支股票中,哪一支股票會賺錢」,這種關於「搜尋」的題目,就得同時考慮好幾百個假設和變數,為了得到較健全 (robust) 的結果,需改成聯合檢定 (joint test) 的統計方法。

若想找出哪個投資組合會賺錢,要聯合檢定好幾個投資組合,不能一個個單獨檢定,藉此控制統計偏誤 (data snooping bias) 。圖│研之有物
若想找出哪個投資組合會賺錢,要聯合檢定好幾個投資組合,不能一個個單獨檢定,藉此控制統計偏誤 (data snooping bias) 。
圖│研之有物

以實際案例來說,與管中閔教授及許博炫教授討論後,我們參考 stepwise Reality Check test (Romano and Wolf, 2005),改良為 stepwise SPA test 這種可以在多個選項中逐步測試的聯合檢定法,用來回答「從多個投資組合中,搜尋哪個投資組合會賺錢」這種問題。我們套用這個方法分析成長和新興市場的指數股票型基金 (ETF),用來佐證某些交易策略 (technical trading rules) 是否確實可以預測 ETF 的走勢(註三)。

另外一個案例,呂宗勳副教授及陳奕奇副教授發現,當 K 線 (Candlestick chart) 的股票價格走勢出現某種模式,就可預測接下來應買入、或賣出該支股票。呂宗勳副教授希望能用嚴謹的統計方法,來檢定這種 K 線投資策略會不會賺錢,所以找我們合作,而實證結果也顯示真的會賺錢。

觀察 K 線的股票價格走勢,可以延伸出很多投資策略,我們將這些投資策略全部一起用 stepwise SPA test 檢定,並控制統計偏誤,詳細的計算過程都發表在論文中(註四),有興趣的朋友可以直接參考。

問為什麼會投入經濟學?

答我其實沒有生涯規劃,只是用「刪去法」避免我不想做的事情。人生這麼短,要做會讓自己開心的事。

高中讀自然組是因為不喜歡社會科目,後來因為對工科、做實驗沒興趣,大學志願就選填數學系。讀臺大數學系的時候,遇到很聰明的同學,如果繼續鑽研數學理論,我知道我不可能贏得了他們。大二時看到有些朋友選修臺大管理學院的課,我想試試看自己是否感興趣,就開始修經濟和會計。

經濟學非常有趣,在很好玩的假設下,可以得到這世界大部分的結果。

經濟學有一說,假設每個人都有理性,會在有限資源內做出效用最大的行為。其實這蠻貼近我們的生活,有多少錢就決定做什麼事。假設我只有一千元,我會在這一千元的範圍內,決定要先吃冰、買衣服、還是看電影,做出會讓自己最開心的決定。

問研究經濟學的「統計方法」有何困難?

答計量經濟學領域中,很多學者在不同的條件假設下,進行不同的研究題目,運用不同的統計方法來計算。

我會專門研究給經濟學家使用的「統計方法」,這跟我的數學背景有關。通常我是找一個已經整理好的樣本資料,看看我設計的統計方法,分析這些資料能否回答新的問題;或是同一套統計方法,應用在不同資料庫,會分析出什麼樣不同的結果。

最困難的是找到大家感興趣的問題,以及找到可以使用的數學工具。

研究新的問題時,不見得有現存的數學工具可直接套用,甚至有時候看不出來哪個數學工具可以引用。有時候我們大概的想法都有了,但困難在於要想辦法把中間的理論證明補齊。

問及支持自己研究統計方法的動力,許育進單純地說:「我覺得學新東西蠻快樂的!」圖│研之有物
問及支持自己研究統計方法的動力,許育進單純地說:「我覺得學新東西蠻快樂的!」
圖│研之有物

問如何突破研究沒進展的困境?

答當然,理論證明不出來的時候,會很失落、很煩,需要做可以放鬆的事情。我在美國讀書的時候,是透過煮飯暫時脫離研究上的不愉快。從買什麼菜、怎麼處理、到看到成品,這過程都要專心,因為若分心,切菜時可能會切到自己。

回臺灣後我改做羊毛氈,這也需要很專心,不然針會戳到手。這些羊毛氈有些送給朋友,有些會義賣並捐給流浪動物花園

許育進在研究之餘製作的羊毛氈:慶祝感恩節的火雞、自己的 Q 版化身、送給國外學者女兒的小兔子。圖│矮酥酥手作羊毛氈
許育進在研究之餘製作的羊毛氈:慶祝感恩節的火雞、自己的 Q 版化身、送給國外學者女兒的小兔子。
圖│矮酥酥手作羊毛氈

研究上突破瓶頸的方式,我也會找熟悉的人討論,看看有沒有已知的統計方法可以使用,或有類似的文獻可參考。或找他們一起合作。另外,當想出某個研究題目,但不確定這個題目有沒有人感興趣,也可以先問問相關領域的學者。

與其自己想不出來,多跟別人討論比較有用。

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界