Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the insert-headers-and-footers domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /var/www/html/wp-includes/functions.php on line 6131

Notice: Undefined index: options in /var/www/data/wp-content/plugins/elementor-pro/modules/theme-builder/widgets/site-logo.php on line 194
金鋼狼與九頭蛇的再生傳說,人類也能斷肢再生? │ 研之有物 - 中央研究院

金鋼狼與九頭蛇的再生傳說,人類也能斷肢再生?

為什麼研究「再生」

組織與器官如何啟動再生機制,至今人們仍然不了解。例如,當切斷蠑螈的手臂和手指,不同部位再生所費時間竟然相同,但為什麼?在中研院細胞與個體生物所,陳振輝團隊利用經由基因突變篩檢出來、失去再生能力的斑馬魚,來了解再生過程的分子機制,期待未來能幫助再生醫學的發展。

希臘神話九頭蛇的再生能力:砍了一個我,還有千千萬萬個我。圖│iStock
希臘神話九頭蛇的再生能力:砍了一個我,還有千千萬萬個我。
圖│iStock

奇蹟般的再生現象

在古代,希臘神話中的怪物九頭蛇,危害沼澤附近的生物,當與海格力斯大戰時,九頭蛇被砍斷頭顱後還可以不斷再生。在現代,X 戰警電影中的金鋼狼,也具有驚人的再生能力,傷口可以在短短幾秒內恢復。從這兩個故事看來,人類從古至今對於再生能力是既感恐懼又羨慕。

再生並非只存在傳說中,自然界也有奇蹟存在。例如,蠑螈雖然是低等的脊椎動物,但可以從被截斷的手臂切面,長出神經、骨頭、血管與肌肉,再生出完好的手臂。而斑馬魚和渦蟲,也都具有很強的再生能力。

蠑螈需花費 30~60 天才能再生一隻完好的手臂,不像金鋼狼那麼誇張,可以瞬間再生,但若能了解哪些關鍵會觸發再生機制,也許有一天人類也可以再生。

「所有人都對再生有興趣,並不是科學界才對再生研究感興趣!」在陳振輝的實驗室,正透過科學化的方法,以斑馬魚為研究對象,探索傷口修復和複雜組織再生過程中,細胞們如何運作。

找找看,能發現失去再生能力的基因突變斑馬魚嗎?被截斷的尾鰭是個指引。圖│研之有物
找找看,能發現失去再生能力的基因突變斑馬魚嗎?被截斷的尾鰭是個指引。
圖│研之有物

透過「斑馬魚」畫出「再生藍圖」

人類的肢幹受傷斷裂,傷口癒合後就形成斷肢,無法再生。但若是截斷斑馬魚尾鰭、用強光破壞視網膜、用細針攪爛一側的大腦,甚至剪斷脊椎這種極端方式,斑馬魚都可以完整再生這些複雜組織。

在脊椎再生的模式中,斑馬魚一開始會因缺乏神經連結而無法再游動,並躺在水缸底兩個禮拜,但待神經重新連結、表皮癒合後,斑馬魚又再次成為一尾活龍、游來游去。(註一)

陳振輝團隊試著想回答兩個問題:再生如何發生?再生機制為何會發生?

再生機制,涵蓋「表皮細胞、骨頭細胞、神經細胞、血管細胞」等運作,就像蓋一棟房子,需要不同材料、不同步驟進行。例如,殘肢上的細胞要移動、增生、分化產生新組織,同時也要跟舊組織溝通、整合,來讓新生的手臂或尾鰭具有正確的大小、形狀和功能。

陳振輝透過 Skinbow 這種多顏色細胞標誌技術,以不同顏色標記斑馬魚體內不同的細胞,觀察再生過程中細胞如何移動、如何分工合作,藉以建立一個三維空間裡,各式細胞如何互動、建構複雜組織的工程藍圖,並運用這個藍圖看看能否移轉到其他生物上實現,也蓋出名叫「再生」的房子。

經過 Skinbow 處理的斑馬魚鱗片,不同細胞被標記不同顏色,在顯微鏡下觀察如同冰淇淋甜筒上的七彩糖珠。圖│Chen et al., (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.
經過 Skinbow 處理的斑馬魚鱗片,不同細胞被標記不同顏色,在顯微鏡下觀察如同冰淇淋甜筒上的七彩糖珠。
圖│Chen et al., (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.

Skinbow:研究再生的繽紛驚喜

環顧陳振輝實驗室中色彩繽紛的照片,彷彿藝廊展覽。照片中所採用的 Skinbow 多顏色細胞標誌技術,點子來自於陳振輝在美國杜克大學醫學院的細胞生物學實驗室中,看到同事 Vikas Gupta 成功運用 Brainbow 多顏色細胞標誌技術,觀察斑馬魚心臟的發育與再生過程。(註二)

Brainbow 由 Jean Livet 於 2007 年時建立,當初是為了觀察老鼠的大腦神經(註三),其基本原理是利用基因重組的方式,隨機將紅綠藍三原色的螢光蛋白在個別細胞表現不同的數量,如此一來便能產生上百種顏色,標誌每一顆細胞,並且觀察每顆細胞的運作狀態。

結合「大腦」的實驗及「彩虹」般的色彩表現,這個以多種顏色標誌細胞的技術便稱為 Brainbow。

而陳振輝團隊轉化此技術,運用於觀察斑馬魚的「表皮細胞」於再生時的運作情況,並另名為 Skinbow ,經過多次嘗試,Skinbow 可用來標誌斑馬魚成魚的尾鰭、鱗片、眼球、甚至整隻仔魚的表皮細胞。

Skinbow:將紅、綠、藍(光的三原色)螢光蛋白標誌疊合之後,可以產生上百種不同顏色來標誌不同的表皮細胞,讓同個細胞在組織再生的過程中,能被長時間追蹤觀察。圖│研之有物
Skinbow:將紅、綠、藍(光的三原色)螢光蛋白標誌疊合之後,可以產生上百種不同顏色來標誌不同的表皮細胞,讓同個細胞在組織再生的過程中,能被長時間追蹤觀察。
圖│研之有物

在 Skinbow 多顏色細胞標誌下,可以觀察斑馬魚的表皮細胞,在面對不同的傷害情況下,如何集體反應、合作、再生,以恢復原來的組織構造。

例如,若想了解截斷斑馬魚的尾鰭後,細胞的移動方式是「沿著截斷面長出新細胞」,或是「舊組織的細胞會往截斷面移動」?透過 Skinbow 可以清楚看見,舊組織的表皮細胞會先移動到截斷面要增生的部份,然後才在原本的舊組織長出新的表皮細胞。

透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。圖│研之有物(資料來源│陳振輝)
透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。
圖│研之有物(資料來源│陳振輝)

為何是斑馬魚?蠑螈不行嗎?

陳振輝表示,斑馬魚作為模式生物已經有二十多年的歷史,科學家主要利用斑馬魚胚胎來研究脊椎動物的發育過程,累積了足夠的遺傳學基礎和研究方法。

另一個主要的原因是斑馬魚在高倍顯微鏡下較易觀察,光是在顯微鏡下觀察尾鰭再生的過程就要持續二十天,但蠑螈太大隻,要持續進行觀察較為困難,因此容易麻醉、方便長時間觀察是考量因素之一。生長週期也是另一關鍵,蠑螈的成長過程需要數年,斑馬魚只要三個月。

斑馬魚的體型小且扁平,麻醉後易於透過顯微鏡長時間觀察。圖│研之有物
斑馬魚的體型小且扁平,麻醉後易於透過顯微鏡長時間觀察。
圖│研之有物

在中研院細胞與個體生物學研究所地下室一樓,有著一間斑馬魚養殖場,一箱箱疊在一起的斑馬魚水族箱,不斷冒著泡泡,水族箱上頭仔細貼著說明標籤。

陳振輝指著尾鰭明顯少掉四分之一(黃圈處)的斑馬魚說:「這隻是尾鰭截斷之後,無法再生的魚。」圖│研之有物
陳振輝指著尾鰭明顯少掉四分之一(黃圈處)的斑馬魚說:「這隻是尾鰭截斷之後,無法再生的魚。」
圖│研之有物

我們將斑馬魚泡在誘發基因突變的藥水中,觀察哪隻斑馬魚在截斷尾鰭後變得「不會再生」,去找出是哪個基因出問題,這可能就是觸發再生的關鍵。

「目前實驗室已經在突變魚身上,找到一些影響再生反應的基因,這樣尋找的過程平均要花上一年半到兩年的時間。」陳振輝說,充滿著耐心。

如何將斑馬魚的再生,應用到人類身上?

陳振輝認為,再生機制的研究要植基於這些「很會再生」的「模式生物」,如果沒有利用這些生物,將很難建立複雜組織再生的模型。

而基礎研究所得到的結果,可以進一步在老鼠模式上面驗證,例如利用斑馬魚的再生機制去調控實驗老鼠的再生能力。(註四)

為什麼人類具有跟斑馬魚一樣的再生基因,卻無法再生?這關乎基因調控的狀況。

再生機制牽涉到兩個層面,第一是人類缺乏斑馬魚具有的特定再生基因;第二,則是基因調控的狀況。

例如,斑馬魚的基因 A 在受傷後會被活化,但人的基因 A 卻不會被活化,因此人類無法再生,這可能牽涉到基因的上游 DNA 序列的調控,而這會影響負責再生的基因表現。

至於其他魚類是否也具有再生能力?陳振輝表示,許多硬骨魚類都有。生物的再生能力,對繁衍優勢沒有直接的影響,因此生物可以在漫長的演化過程中獲得或失去再生能力。例如並非所有的渦蟲及蠑螈都會再生,部分譜系的渦蟲及蠑螈在演化過程中,也失去了再生複雜組織的能力。

人類敬畏又渴望再生的能力,但在演化過程中,大自然選擇性地讓部分物種保留再生的特權。陳振輝播放著已看過無數次的蠑螈再生斷肢的影片,驚嘆地說:「再看幾次還是會覺得這些動物怎麼這麼神奇,讓人不斷地想了解為什麼牠們可以有這樣的能力?」

2017-06-19

採訪編輯|王怡蓁
美術編輯|張語辰

延伸閱讀

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界